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Abstract. The renormalisation group ( R G )  method is applied to the investigation of an 
exactly solvable phase transition model in which only the interaction between fluctuations 
with equal and antiparallel momenta is taken into account. The RG equation for the model 
is derived, its exact solution and critical asymptotics are obtained. It is shown that direct 
calculation of the partition function and solution of the RG equation for the model lead 
to identical results. 

1. Introduction 

Application of the renormalisation group approach to analysis of critical phenomena, 
initiated by Wilson (1971), has resulted in a number of rather important achievements. 
This approach made it possible not only to perform purely numerical calculations of 
critical exponents with a high degree of accuracy but also to predict some qualitatively 
new effects which could not be obtained within conventional approaches, e.g. within 
the mean-field approximation (for a review see Aharony 1976, Patushinskii and Pokrov- 
skii 1982). However, even now the applicability of the RG method to three-dimensional 
systems remains, strictly speaking, only a hypothesis. Thus it seems reasonable to 
compare results being obtained with the help of the RG method with those being 
produced by other approaches. The application of the RG method to exactly solvable 
models is just one way to make this comparison. Since exactly solvable models allow 
one to calculate critical asymptotics exactly, coincidence of the results is quite strong 
evidence in favour of the RG method being correct. On the other hand, if a model is 
not made too trivial one can try to derive from it the same fluctuation effects as from 
the RG method. And this would also confirm the correctness of the RG technique 
(albeit indirectly in this case). To a certain extent the latter program was realised in 
our earlier works (Ivanchenko et al 1986a, 1987b). Therefore in this paper the main 
emphasis will be made on direct application of the RG method to investigation of an 
exactly solvable model of phase transitions. 

The structure of the paper is as follows. The first part presents some main relations 
referring to the formulation of an exactly solvable model of phase transitions which 
is a generalised version of the model proposed by Schneider et a1 (1975). In the second 
part, the RG equation for this model is derived directly in accordance with a general 
scheme of the method. The concluding part is devoted to an analysis of the derived 
RG, calculation of critical exponents and comparison of the results with those obtained 
previously as a solution of the exactly solvable model. 
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2. Formulation of the model 

We start from the following Ginzburg- Landau functional with a single-component 
order parameter: 

z=L 1 ddr[(Vcp)’+F(cp2)] 
T 2  

where r is a &dimensional spatial coordinate, and the function F(cp’) is assumed to 
be analytic, i.e. for this function there is a representation in a series form 

The model becomes exactly solvable if one replaces all integrals of the 5 ddr q Z k (  r) 
type (appearing at the substitution of expansion (2.2) into (2.1)) by powers of the 
integral a = 5 dd, cpz( r), i.e. 1 ddr c p 2 k  + V ( a /  V ) k .  (2.3) 

The number of pairing combinations c p 2  that can be obtained from q2k is (2k - l)!!, 
so function (2.2) is transformed into 

Now it quite easy to calculate the partition function of the system 

z = 1 ~ c p  exp(-x[cp~/ TI. 

The functional in the exponent can be easily linearised with respect to a by using the 
representation 

] (2.5) 
exp [ - :f (:)I = I OC d x d y  exp [-if (5) + iy(x - a )  

--af 

and the integral over cp can be calculated in a simple way 

Having performed the substitution x/ V +  x and 2iy + y,  one can write down the result 
of the integration as 

Here the integration over the mode cpq=o = cp0n condensing at the phase transition 
point is retained. 9( cpo) corresponds to the phenomenological free energy as a function 
of the order parameter (the equilibrium value is usually defined as min, 9(p0)). The 
following procedure for calculating z is based on the saddle point method, which is 
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exact in the thermodynamic limit V+ W. It reduces the problem to the solution of a 
pair of equations for the saddle point a s l a x  = aF/ay = 0 and the equation of state 
aB/acp,=O. This program was realised in our previous works (Ivanchenko et al 
1986a, b, 1987a). It was shown that the model under consideration had the critical 
asymptotics of the spherical model (Berlin and Kac 1952, see also Plakida and Tonchev 
1985). Moreover, the model formulated in this way allowed us to investigate rather 
easily quite a number of fluctuation effects predicted within the framework of the 
essentially more complicated RG approach. The fact that these effects were derived 
from the consideration of the exactly solvable model in which fluctuation interaction 
is only slackened by the Ginzburg-Landau functional reduction (2.4) is strong evidence 
in favour of the real existence of these effects. I t  concerns both crossover of critical 
exponents (Ivanchenko et a1 1987a) and changes in the phase transition sequence, as 
compared to that predicted by mean-field theory or as well as fluctuation-induced 
discontinuous transitions in anisotropic systems (Ivanchenko et a1 1986a, 1987b). 

The application of the RG method to the above model is of interest by itself. On 
the one hand, since this model is exactly solvable, the correctness of the RG method 
can be effectively tested. On the other hand, the functional f ( a / V )  in this model 
remains arbitrary enough to enable one to follow the process of its renormalisation. 

3. The RG equation for the model 

Let wave vectors q be restricted by the cutoff momentum A.  In accordance with the 
general idea of the RG method, at the first stage one should exclude modes cp, such 
that A / s  < q < A where S > 1 is an arbitrary constant. Using representation (2.6), one 
can easily integrate the partition function z over these modes. So one gets 

z - j  Dq,, , / ,dxdyexp -- ( q 2 + 2 i y ) l c p o , I z + - ( 2 i y x - V f ( x / V ) ) -  VQ(2iy) 

(3.1) 
where @( V; 2iy) = V-' Z , / s c q c ,  In(2iy+ q 2 ) .  At the second stage one should change 
scale q so as to make the cutoff momentum for new vectors q' = qs equal to A again. 
For this purpose one should change the field variables cp to provide the coincidence 
of thef-independent part of functional 2f (namely 2,  q21cpqI2) with its trial expression. 
Thus one has cpi, = c p , ~ - ' ~ + ~ ' / ~  and consequently 

1 1 
2 q <  \ / c  2 ( l  

1 
2 

z - 5  Dcpb,dxdyexp q'21cpq, (2+-[2 iy(x-as2) -  V'sdf(x/V', s-")]-@(2iy) 

(3.2) 
Now one can make the replacement x/  V'+ x. I t  is also convenient to substitute y for 
2iy. The renormalised function f ' ( a /  V') appears if (3.2) is again written in the form 

Here 

:f'(+) = - I n j d x d y e x p  

V' = -In dx  dy exp( -?a(,, y ) ) ,  (3.4) 
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It is obvious that at V +  CO f'( a /  V ' )  = min,,,CL(x, y ) .  Thus 

y(+) = s " f ( X s - " -  x-- f x + @ ( V ' ; f x ) .  ( (3.5) 

To derive the differential equation for function f one can use the infinitesimal transfor- 
mation s = 1 + 6 where 6 << 1. Using condition dCL/dy = as'/ V ' + d @ / d f v  - x = 0 and 
expanding to the small values 0 ( 6 ) ,  one can easily rewrite (3.5) as 

(3.6) f'( x ) = f( x ) + 6 ( df - ( d - 2)f,x + @/ 6 ) . 
Let us define now the renormalisation group 'time' 1 so that 

Then according to (3.6) the RG equation for function f acquires the final form 

f = d f - ( d - 2 ) x x x + & .  (3.7) 

Here the function 6, determined by the relationship 6 = @ / S ,  is K d V - ' A d  ln(A2+fx), 
where K d  = 1 / 2 d - ' 7 7 d ' 2 F ( d / 2 )  is the area of the d-dimensional sphere of unit radius 
divided by ( 2 ~ ) " .  Let us expand 6 as a power series in f y  : 

K 
V 

6 = = ( A d  l n A 2 + , ~ d - ' f , - A d - 4 f ~ ) + O ( A d - 6 , .  . .). (3.8) 

The first two terms of (3.8) can be eliminated from (3 .7)  by means of rescaling f(0) 
and x respectively. The factor Ad-4 at ft is eliminated by the replacement f x  = f,Ad-4. 
And the remaining powersf': acquire factors of the form A2'd-2"'-k'2' . Now the cutoff 
momentum can be taken to infinity. Then the terms proportional to f22'd-2"'-k'2' at 
k > 2 will vanish and this equation becomes very simple: 

(3.9) f = df- ( d  - 2)fxx -ft. 
The simplicity of this equation is obviously not accidental. In fact, the initial model 
permits the exact solution, consequently one can hope that the respective RG equation 
can be solved exactly. Certain difficulty arises from the fact that (3.9) is non-linear 
and contains partial derivatives with respect to 1 and x.  To investigate this equation 
one can use the Euler method, defining new variables X ,  Y and Z by the relationships 

f x  = x I =  Y xfx -f = z. (3.10) 

As Zy = -f one gets 

Z y  = d Z  - 2 X Z x  + X I .  (3.11) 

The full integral of (3.1 1) contains the arbitrary function Q( t )  with continuous deriva- 
tive and is equal to Z = X 2 / ( 4 -  d )  + Q(IX/''* e-')/Xld''. Coming back to the variables 
(x, l , f ) ,  one gets another form of (3.9): 

(3 .12)  

At first glance this form may seem to be even worse than (3.9). Its advantages, however, 
are revealed when one passes to fx as an independent variable (i.e. considering 
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x = x(fx, I ) ) .  Differentiating (3.12) with respect to x, one has 

(3.13) 

Here o( t )  is obviously an arbitrary function too. Relationship (3.13) explicitly defines 
x as a function of f x  and 1 as it does not contain the function f itself. In view of this 
it should be mentioned that analytical calculation of the partition function (2.7) within 
the framework of the model (Ivanchenko et aI 1986a, 1987b) led to the use of 1% as 
an independent variable in the saddle point equations and did not contain the function 
f itself. 

4. Calculation of critical exponents 

The critical exponent of correlation length v can be an inverse of a maximum (positive) 
eigenvalue A I  of the RG equations linearised in the vicinity of a fixed point. Function 
f x  is assumed to be finite at any point x so J;  e-2‘ -+ 0 as 1 -+ m. In this case fixed points 
for the solution (3.13) are determined by the equality 

(4.1) 

At an arbitrary d the presence of the second term leads to non-analytical expansion 
o f f  in powers of x. Leaving only physically sensible analytical fixed points, as is 
usually done in the theory of critical phenomena, at 2 < d < 4 one obtains a constraint 
on the function o( t) :  o(0) = 0, so that = (4 - d)x/2 .  Besides, quite naturally, the 
trivial solution of equation (3.9) exists: f” =E = 0. 

Let us linearise (3.9) in the vicinity of these fixed points. Nearf” =E= 0 this can 
be performed quite easily. Let + = f -f”, then 

(4.2) 
Integrating (4.2), one obtains, apart from an arbitrary factor, (Lk = x ( ~ - - * A ) ’ ( ~ - ~ )  . In 
view of the fact that the deviation off  from f” can be presented as a power series of 
x, i.e. + = Ik  ckxk, one has hk = d - k(d - 21, i.e. the spectrum coinciding with the well 
known RG spectrum for the Gaussian fixed point A ,  = 2, A 2  = 4 - d = E and so on. At 
d < 4  this point is unstable and the linearisation of (3.9) should be performed in the 
vicinity of solution (4.1). One has 

A$ = d$ - ( d  - 2)~$, .  

A +  = d+ - [ ( d  - 2 ) ~  + 2f:]+. (4.3) 
In order to get every solution for this equation it is convenient to exclude the x 
dependence. This can be done with the help of equation (3.9), which at the fixed point 
has the form 

df” = ( d  -2)f:x+ (f,*)’. 

After differentiating with respect to one has 
(4.4) 

dx 
(d  - 2 ) ~  + 2f: = 2f ,* - 

df  x* (4.5) 
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Substituting this into (4.3) and  considering as an independent variable, one gets 

(4.6) 

From this equation, omitting an  arbitrary factor, one gets - ( j ~ ) ( d - A ~ ~ ” ’  - x ‘ ~ - * L ) ’ ~ ,  

Bearing in mind again that + = ZA ckxk,  one finally has hk = d - 2k. The beginning of 
the sequence A k  has the form A ,  = ( d  -2) ,  A 2  = - E ,  and so on. The p o i n t p  is obviously 
stable at  d < 4, and its high-order eigenvalue A ,  determines the exponent Y = l /A, = 

Here a natural question arises concerning the domain of attraction to the found 
fixed point, which is closely linked with another question about the type of the phase 
transition. To answer these questions let us take into account that when an  initial 
functionf( 1 = 0; x )  (which can be also seen as xocf,) = x (  I = 0; f r ) )  is stated, the function 
& I  = 0 ; f . )  should be defined from (3.13) as 

l / ( d - 2 ) .  

And, consequently, (3.13) can be rewritten in the form 

x = 2fr( 1 - e(d-4)1)/(4- d )  + xO(fx e-21) e(d-2)‘. 

At l+co the fixed point f * = ( 4 - d ) x / 2  can be achieved (for 2 < d  < 4 )  under the 
condition that xo vanishes as (fi e-2’)” where the exponent a > ( d  -2) /2 .  In other 
words, the expansion of f in powers of x must begin from the power x k  with 
k < d / ( d  -2) .  Since d < 4, the latter is satisfied by any trial Ginzburg-Landau func- 
tional whose expansion begins from a power not higher than p4. This can be considered 
as natural for an  isotropic system where the sole reason for changing the critical 
behaviour from a tricritical one is nullification of a factor at the p4 term. It should 
also be mentioned that the above restriction on the type of x O ( f y )  leads automatically 

Since the critical exponent must satisfy scaling relations, it is sufficient to find only 
one exponent in addition to v. 

It can be done easily for the Fisher exponent 7 which determines the critical 
asymptotics of the two-point correlation function G, = (p,p-,) - q-2 i  ”. As is seen 
explicitly from (3.3) the RG procedure performed for this model does not give rise to 
new (as opposed to q2(pqI2)  types of non-localities of the Ginzbug-Landau functional 
vertices. Therefore in this case G, - q-*, so the Fisher exponent 77 is zero. This result 
can be, naturally, certified by means of direct calculation of G, for the model. 

Using 7 = 0 ,  one gets y = 2 v = 2 / ( 2 - d ) ;  6 = ( d + 2 ) / ( d - 2 ) ,  i.e. the known 
exponents for the systems belonging to the spherical model universality class, Thus 
we see that the critical asymptotics obtained both as a result of the exact solution and  
with the help of the RG analysis coincide. 

In conclusion we should like to mention the following. As was shown by Stanley 
(1968), the spherical model corresponds to the limit of the infinite number of com- 
ponents (n + 00) of the vector cp. It is of interest to compare the RG equation specified 
here for the model (3.9) with the limit for the local version (at 7 =0)  of the Wilson 
exact RG equation (Wilson and  Kogut 1974, Nicol er a1 1976). Using the form of this 
equation proposed by Tokar (1984) one has for O ( n )  of the symmetric Ginzburg- 
Landau functional F with local vertices: 

to & O )  =o.  

P = dF - ( d  - ~ ) F , X  + f h F ,  + Frxx - F;X. (4.7) 
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Substituting n ( x + l / 2 ( d  - 2 ) )  for x and nF for F, in the n j - 0 0  limit one gets 

F =  dF - ( d  - ~ ) F , x  - xFZ, (4.8) 

which differs from (3.9) by the factor x in the last term of the right-hand side. One 
can verify, however, that (4.8) also leads to the exponent y = 2 / (  d - 2 ) .  Thus, though 
the model investigated here is, strictly speaking, different from the spherical one, both 
these models belong to the same universality class. 
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